Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Ping Yin, Mao-Lin Hu* and Qian

 MiaoSchool of Chemistry and Materials Science, Wenzhou University, Wenzhou 325027,
People's Republic of China

Correspondence e-mail:
hu 403 cn @yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.013 \AA$
R factor $=0.083$
$w R$ factor $=0.167$
Data-to-parameter ratio $=14.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Aqua(1,10-phenanthroline)bis(trichloroacetato)copper(II)

In the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, the copper(II) ion is five-coordinated by four basal atoms (two N atoms from a 1,10-phenanthroline molecule and two O atoms from two trichloroacetate anions) and one axial aqua molecule, in a distorted square-pyramidal coordination geometry. Moreover, two adjacent mononuclear units are associated by intra- and intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a grid dimer. The hydrogen-bonding pattern could be described in graph-set terminology as $R_{1}^{1}(6) R_{1}^{2}(8)$.

Comment

Five-coordinate copper(II) complexes have geometries ranging from trigonal-bipyramidal to square-pyramidal. Energetically, the limiting trigonal-bipyramidal and squarepyramidal forms are often almost equally favorable, with a low activation barrier to interconversion. Two such copper(II) complexes, $\left[\mathrm{Cu}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right) \mathrm{Cl}\right]_{n}$ and $\left[\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{4}\right)\right.$ $\left.\mathrm{Cl}_{2}\right]_{n}$ have been reported by us (Hu et al., 2004, 2005). To extend this research, we report here the crystal structure of the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, (I).

(I)

In (I), each Cu ion is five-coordinated, with a distorted square-pyramidal geometry (Fig. 1 and Table 1), as determined by the observed distortion value τ (Van Albada et al., 1999; Addison et al., 1984) of 0.184 , which is near the ideal value of $\tau=0$. For perfect trigonal-bipyramidal geometry, $\tau=$ 1. The basal plane is formed by atoms N 1 and N 2 from one 1,10-phenanthroline ligand in chelating mode, along with atoms O 1 and O 3 from two trichloroacetate anions with an r.m.s. deviation of $0.1406 \AA$. The apical site is occupied by an aqua molecule. Atom Cu 1 is located 0.226 (2) \AA out of the

Received 11 August 2005 Accepted 19 August 2005 Online 27 August 2005

Figure 1

The mononuclear unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
basal plane towards O5. Moreover, two adjacent mononuclear units are associated by intramolecular $\mathrm{O} 5-\mathrm{H} 5 B \cdots \mathrm{O} 2$ and intermolecular $\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2^{\mathrm{i}}$ and $\mathrm{O} 5-\mathrm{H} 5 B \cdots \mathrm{O} 3^{\mathrm{i}}$ [symmetry codes: (i) $2-x, 2-y, 1-z$] hydrogen bonds to form a grid dimer (Fig. 2 and Table 2). The hydrogen-bonding pattern, as shown in Fig. 2, could be described in graph-set terminology (Etter, 1990; Grell et al., 2000) as $R_{1}^{1}(6) R_{1}^{2}(8)$.

Experimental

The title compound was synthesized by a hydrothermal method from a mixture of trichloroacetic acid ($2 \mathrm{mmol}, 0.32 \mathrm{~g}$), $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ ($1 \mathrm{mmol}, 0.17 \mathrm{~g}$) and 1,10-phenanthroline ($2 \mathrm{mmol}, 0.36 \mathrm{~g}$), along with water $(20 \mathrm{ml})$ in a 30 ml Teflon-lined stainless steel reactor. The solution of (I) was heated to 418 K for three days. After the reaction system had been cooled slowly to room temperature, blue prismatic crystals were collected and washed with distilled water.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=586.51$
Monoclinic, $P 2_{1} / c$
$a=11.8410$ (7) \AA
$b=12.5940(8) \AA$
$c=17.8365$ (8) \AA
$\beta=123.817$ (3) ${ }^{\circ}$
$V=2209.9(2) \AA^{3}$
$Z=4$

Data collection

Bruker APEX area-detector	3892 independent reflections
diffractometer	3535 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.050$
Absorption correction: multi-scan	$\theta_{\max }=25.0^{\circ}$
$(S A D A B S ;$ Bruker, 2002 $)$	$h=-14 \rightarrow 14$
$T_{\min }=0.700, T_{\max }=0.818$	$k=-14 \rightarrow 14$
20876 measured reflections	$l=-21 \rightarrow 21$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.083$
$w R\left(F^{2}\right)=0.167$
$S=1.31$
3892 reflections
277 parameters
H -atom parameters constrained
$D_{x}=1.763 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3444 reflections
$\theta=2.3-24.2^{\circ}$
$\mu=1.75 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, blue
$0.22 \times 0.15 \times 0.12 \mathrm{~mm}$

3892 independent reflections
3535 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$
$h=-14 \rightarrow 14$
$k=-14 \rightarrow 14$
$l=-21 \rightarrow 21$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0476 P)^{2}\right. \\
\quad+6.2996 P] \\
\text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.66 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-0.42 \mathrm{e}^{-3}
\end{gathered}
$$

Figure 2
The grid dimer of (I) formed by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond interactions, which are shown as dashed lines. [Symmetry code: (i) $2-x, 2-y, 1-z$.]

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.943(4)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$2.027(5)$
$\mathrm{Cu} 1-\mathrm{O} 3$	$1.968(4)$	$\mathrm{Cu} 1-\mathrm{O} 5$	$2.243(5)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$2.002(5)$	$\mathrm{Cu} 1-\mathrm{O} 4$	$2.844(4)$
			$81.9(2)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3$	$95.13(18)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1$	$95.14(19)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$170.75(19)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 5$	$96.70(17)$
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 2$	$92.70(19)$	$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 5$	$88.83(19)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$89.04(19)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 5$	$102.69(19)$
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 1$	$159.72(19)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 5$	

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2^{\text {i }}$	0.82 (2)	1.97 (3)	2.765 (7)	161 (7)
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O}^{\text {i }}$	0.82 (2)	2.46 (5)	2.972 (6)	121 (5)
O5-H5B \cdots O2	0.82 (2)	2.45 (6)	3.056 (9)	131 (6)

Symmetry code: (i) $-x+2,-y+2,-z+1$.
The aromatic H atoms were placed at calculated positions $(\mathrm{C}-\mathrm{H}=$ $0.93 \AA$) and were included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The water H atoms were located in difference Fourier maps and were refined with distance restraints of $\mathrm{O}-\mathrm{H}=0.82(2) \AA$ and $\mathrm{H} \cdots \mathrm{H}=1.39(1) \AA$; their displacement parameters could not be refined and were instead similarly tied.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

We acknowledge financial support by the Zhejiang Provincial Technology Project Foundation of China (No. 2004 C32088), the Zhejiang Provincial Natural Science Foundation of China (No. 202137) and the National Natural Science Foundation of China (No. 20471043).

metal-organic papers

References

Addison, A. W., Nagesware Rao, T., Reedijk, J., Van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Winsonsin, USA.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.

Grell, J., Bernstein, J. \& Timhofer, G. (2000). Acta Cryst. B56, 166-179.
Hu, M. L., Cai, X. Q. \& Chen, J. X. (2005). Acta Cryst. C61, m403-m405.
Hu, M. L., Cai, X. Q., Shi, Q. \& Cheng, Y. Q. (2004). Acta Cryst. C60, m575m577.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Van Albada, G. A., Komaei, S. A., Kooijman, H., Spek, A. L. \& Reedijk, J. (1999). Inorg. Chim. Acta, 287, 226-231.

